A confidence-aware interval-based trust model

نویسندگان

چکیده مقاله:

It is a common and useful task in a web of trust to evaluate the trust value between two nodes using intermediate nodes. This technique is widely used when the source node has no experience of direct interaction with the target node, or the direct trust is not reliable enough by itself. If trust is used to support decision-making, it is important to have not only an accurate estimate of trust, but also a measure of confidence in the intermediate nodes as well as the final estimated value of trust. The present paper thus aims to introduce a novel framework for integrated representation of trust and confidence using intervals, which provides two operations of trust interval multiplication and summation. The former is used for computing propagated trust and confidence, whereas the latter provides a formula for aggregating different trust opinions. The properties of the two operations are investigated in details. This study also proposes a time-variant method that considers freshness, expertise level and two similarity measures in confidence estimation. The results indicate that this method is more accurate compared to the existing ones. In this regard, the results of experiments carried out on two well-known trust datasets are reported and analyzed, showing that the proposed method increases the accuracy of trust inference in comparison with the existing methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GTrust: a group based trust model

Nowadays, the growth of virtual environments such as virtual organizations, social networks, and ubiquitous computing, has led to the adoption of trust concept. One of the methods of making trust in such environments is to use a long-term relationship with a trusted partner. The main problem of this kind of trust, which is based on personal experiences, is its limited domain. Moreover, both par...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

A Robust and Knot-Aware Trust-Based Reputation Model

Virtual communities become more and more heterogeneous as their scale increases. This implies that, rather than being a single, homogeneous community, they become a collection of knots (or sub-communities) of users. For the computation of a member’s reputation to be useful, the system must therefore identify the community knot to which this member belongs and to interpret its reputation data co...

متن کامل

Confidence Interval for Solutions of the Black-Scholes Model

The forecast is very complex in financial markets. The reasons for this are the fluctuation of financial data, Such as Stock index data over time. The determining a model for forecasting fluctuations, can play a significant role in investors deci-sion making in financial markets. In the present paper, the Black Scholes model in the prediction of stock on year later value, on using data from mel...

متن کامل

A Genetic Programming-based trust model for P2P Networks

Abstract— Peer-to-Peer ( P2P ) systems have been the center of attention in recent years due to their advantage . Since each node in such networks can act both as a service provider and as a client , they are subject to different attacks . Therefore it is vital to manage confidence for these vulnerable environments in order to eliminate unsafe peers . This paper investigates the use of genetic ...

متن کامل

merging similarity and trust based social networks to enhance the accuracy of trust-aware recommender systems

in recent years, collaborative filtering (cf) methods are important and widely accepted techniques are available for recommender systems. one of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. however, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. with the dev...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 2

صفحات  151- 165

تاریخ انتشار 2012-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023